

The Procedures described in this presentation are available in the following KDB publications:

- KDB 941225:
 - > SAR Measurement Procedures for 3G Devices
 - ➤ CDMA 2000 / Ev-Do
 - >WCDMA / HSDPA
- KDB 865664:
 - ➤ SAR Measurement Requirements for 3 6 GHz
- KDB 248227:
 - ➤ SAR Measurement Procedures for 802.11 a/b/g
 Transmitters

Agenda

- SAR Measurement Procedures for 3G Devices
 - CDMA 2000 / Ev-Do
 - WCDMA / HSDPA
- SAR Measurement Requirements for 3 6 GHz
- SAR Measurement Procedures for 802.11 a/b/g
 Transmitters

- SAR Measurement Procedures -

for

3G Devices

CDMA 2000 / EV-DO WCDMA / HSDPA

(Released June 2006)

Overview

- SAR measurement procedures for 3G devices
 - Part 22 & Part 24 handsets and data modems
 - procedures may not fully apply to other radio services
- test configurations are mostly derived according to
 - 3GPP2/TIA & 3GPP standards
- devices are tested according to
 - operating capabilities and dominant use conditions
- device test configurations are standardized
 - for head & body SAR measurements
 - to minimize SAR variations

procedures for Release 0 & Release A handsets with

- MS Protocol Revision 6 & 7
 - 1x RTT only or
 - 1x RTT and built-in Ev-Do
- head/body SAR is measured in RC3
 - with established radio link through call processing
 - using the same RC in forward and reverse links
- SAR in RC1 is selectively confirmed
 - according to output power and exposure conditions

Radio Configurations

- verify maximum output power
 - on high, middle and low channels
 - according to 3GPP2 C.S0011 / TIA-98-E, Sec. 4.4.5
 - to determine SAR test configurations
- power measurement configurations
 - Test Mode 1, SO55, RC1, Traffic Channel @ 9600 bps
 - Test Mode 3, SO55 or SO32, RC3, FCH @ 9600 bps
 - Test Mode 3, SO32, RC3, FCH+SCH @ 9600 bps
 - other configurations supported by the DUT
 - power control
 - Bits Hold for FCH+SCH
 - otherwise All Bits Up

Head SAR

measure in RC3

- at full rate with Loopback SO55
- according to applicable requirements
 - in Supplement C 01-01 & IEEE 1528
- measure in RC1 on the maximum output channel
 - only if maximum average output ≥ ¼ dB higher than
 RC3
 - use the exposure configuration that result in the highest
 SAR for that channel in RC3
 - highest SAR configuration among left & right side, touch & tilt positions with antenna extended and retracted

Body SAR

- measure in RC3 at full rate using TDSO SO32 with
 - FCH only (may use SO55 instead of SO32)
 - FCH + SCH (must use TDSO SO32)
 - <u>only</u> if the maximum average output power ≥ ¼ dB higher than with FCH only
 - use the exposure configuration that result in the highest SAR for that channel with FCH only
 - monitor output fluctuations and SCH dropout
- measure in RC1
 - only if the maximum average output power ≥ ¼ dB higher than RC3 FCH only & FCH + SCH
 - use the body exposure configuration that result in the highest SAR, with antenna extended and retracted, for that channel in RC3

Ev-Do

Procedures for Rev. 0 & Rev. A (IS-856 / TIA-856-A)

Ev-Do & 1x RTT may roam but not simultaneously active

measure SAR

- with established radio link through call processing
- or use chipset based Factory Test Mode (FTM) with communication test set and no call processing
- configure DUT according to
 - FTAP/RTAP (C.S0029-0) and Subtype 0/1 PHY configurations
 - FETAP/RETAP (C.S0029-A) and Subtype 2 PHY configurations
 - maximum output power procedures in C.S0033
- SAR in 1x RTT & Ev-Do Rev. A are selectively confirmed
 - according to output power and exposure conditions

8

Output Power

- configure measurements according to
 - C.S0033-0 / TIA-866 for Rev. 0
 - FTAP: 2 slot version of 307.2 kbps; ACK in all slots
 - RTAP: 153.6 kbps in Subtype 0/1 PHY configuration
 - C.S0033-A for Rev. A
 - FETAP: 2 slot version of 307.2 kbps with ACK in all slots
 - RETAP: 4096 bits payload with 16 slot termination target in Subtype 2 PHY configuration
- power control
 - 'All Bits Up' in both FTM & call processing modes

Head & Body SAR

body SAR

- is required for Rev. 0 in Subtype 0/1 PHY configuration
- is <u>NOT</u> required for Rev. A when the maximum average output power in Subtype 2 PHY configuration is less than in Subtype 0/1
 - otherwise, measure SAR on the maximum output channel using the exposure configuration that result in the highest SAR for that channel in Rev. 0

head SAR is <u>NOT</u> required unless

device supports VOIP for operations next to ear

Ev-Do & 1x RTT

- 1x RTT SAR is **NOT** required for Ev-Do devices
- when the maximum average output power for 1x RTT < 1/4
 dB higher than Subtype 0/1
 - otherwise, measure body SAR with CDMA 2000 procedures
- SAR is NOT required for handsets with built-in Ev-Do
 - when the maximum average output power for Ev-Do Rev. 0
 4 dB higher than 1x RTT in RC3
 - otherwise test SAR in Subtype 0/1 PHY configuration on the maximum output channel using the exposure configuration that result in the highest SAR for that channel in RC3
 - when the maximum average output power for Ev-Do Rev. A
 Rev. 0 or < ½ dB higher than 1x RTT RC3
 - otherwise test SAR in Subtype 2 PHY configuration on the maximum output channel using the exposure configuration that result in the highest SAR for that channel

- procedures for Release 99 & Release 5 handsets with
 - WCDMA only
 - WCDMA and built-in HSDPA
- head and body SAR is measured with
 - established radio link through call processing
 - 12.3 kbps RMC and Test Loop Mode 1
- SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n)
 - according to output power, exposure conditions and device operating capabilities

Output Power

- verify maximum output power
 - on high, middle and low channels
 - according to 3GPP TS 34.121, Sec. 5.2
 - using appropriate RMC or AMC with TPC set to all "1's"
- power measurement configurations
 - 12.2 kbps RMC and 12.2 kbps AMC
 - other configurations supported by the DUT
 - 64, 144, 384, 768 kbps RMC
 - DPDCH_{2...6} when applicable

- measured in 12.2 kbps RMC
 - according to applicable requirements
 - in Supplement C 01-01 & IEEE 1528
- SAR is <u>NOT</u> required for AMC
 - when the maximum average output power for 12.2 kbps
 AMC < ½ dB higher than 12.2 kbps RMC
 - otherwise, measure SAR on the maximum output channel in 12.2 kbps AMC with a 3.4 kbps SRB
 - use the exposure configuration that result in the highest SAR for that channel in 12.2 kbps RMC
 - highest SAR configuration among left & right side, touch
 & tilt positions with antenna extended and retracted

Body SAR

- measured in 12.2 kbps RMC
- SAR is <u>NOT</u> required for other spreading codes and multiple DPDCH_n supported by the device
 - when the maximum output for each of these other configurations < ½ dB higher than 12.2 kbps RMC
 - otherwise, measure SAR on the maximum output channel in each of these configurations
 - use the body exposure configuration that result in the highest SAR, with antenna extended and retracted, for that channel in 12.2 kbps RMC

HSDPA

- procedures for Release 5
 - HSDPA is an integral part of WCDMA
 - HSDPA & WCDMA are simultaneously active
- measured SAR
 - with established radio link through call processing
 - or chipset based Factory Test Mode (FTM) with communication test set and no call processing
 - in WCDMA with 12.2 kbps RMC and Test Loop Mode 1
 - in HSDPA with FRC and 12.2 kbps RMC using the highest SAR configuration in WCDMA
- SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n)
 - according to output power, exposure conditions and device operating capabilities

HSDPA

H-Set 1

Output Power

- verify maximum output power
 - on high, middle and low channels
 - according to 3GPP TS 34.121, Release 5, Sec. 5.2
 - using appropriate FRC and RMC with TPC set to all "1's"
- measurement configurations
 - 12.2 kbps RMC
 - 12.2 kbps FRC with 12.2 kbps RMC
- other configurations supported by the DUT
 - DPCCH, DPDCH_n, spreading codes, HS-DPCCH etc.

Head & Body SAR

- when voice transmission and head exposure conditions are applicable
 - use WCDMA handset head SAR procedures
- body exposure for HSPDA data devices
 - use WCDMA handset body SAR procedures, and
 - FRC with a 12.2 kbps RMC in Test Loop Mode 1
 - using the highest body SAR configuration in 12.2 kbps RMC without HSDPA

October 2006 HSDPA SAR Procedures 18

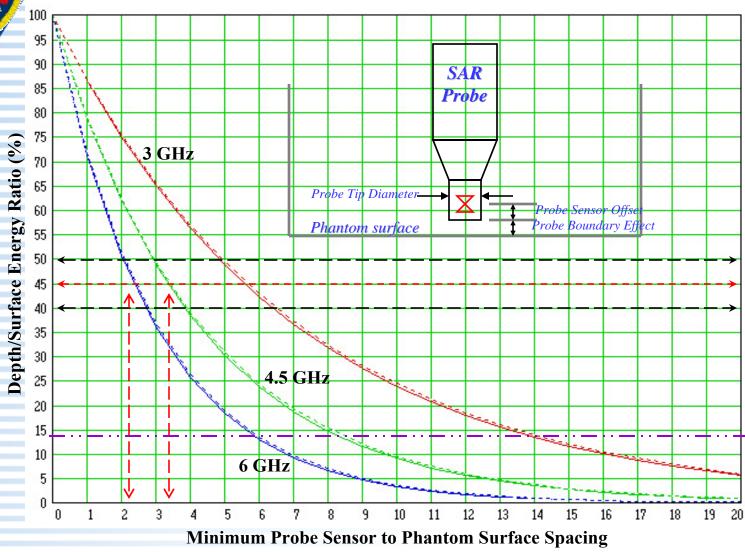
- H-set is configured in FRC according to UE category
 - HS-DSCH/HS-PDSCHs, HARQ processes,
 minimum inter-TTI interval, transport block sizes,
 RV coding sequence are defined by H-set
- use QPSK in H-set
- use CQI feedback cycle of 2 ms in HS-DPCCH
- use β_c =9 and β_d =15 for DPCCH and DPDCH gain factors
- use $\Delta_{ACK} = \Delta_{NACK} = 5$ and $\Delta_{CQI} = 2$

- SAR Measurement Requirements -

for

3 - 6 GHz

(Released October 2006)


- identify SAR measurement and instrumentation issues
 - smaller penetration depth at higher frequencies
 - higher field gradients closer to the tissue boundary
 - existing SAR procedures for below 3 GHz are insufficient
 - tissue-equivalent media recipes require non-polar liquids
- review of FCC exploratory measurements and standards committees discussions
- provide interim guidance for equipment certification
- enable an acceptable level of measurement confidence while standards are being developed

Phantom

- head and flat phantom
 - according to Supplement C 01-01 & IEEE 1528 criteria
 - phantom shell issues under investigation by IEEE / IEC
 - need to account for underestimated SAR
- $\pm 10\% \, \varepsilon_{\rm r} \, \& \, \pm 5\% \, \sigma$ for liquid target value uncertainty
- dielectric measurement uncertainty remains at $\pm 5\%$
- 10 cm liquid depth from SAM ERP or flat phantom
- flat phantom size
 - 5 cm surrounding transmitter
 - or 3 penetration depths around measurement region
 - maximum of 2 overlapping area scans to cover entire projections of certain standalone fully integrated DUT
 - regions of host device not contributing to SAR may extending beyond phantom margin

Measurement Constraints

Probe Requirements

< 4.5 GHz	Frequency	≥ 4.5 GHz	
≤ 4 mm	Probe Tip Diameter	≤ 3 mm	
≤ 2 mm	Probe Sensor Offset	≤ 1.5 mm	
$\epsilon_{\rm r} \le \pm 10\%, \sigma \le \pm 5\%$ < 15%, k=2	± 50 MHz > Probe Calibration ≤ ± 100 MHz Calibration Uncertainty	$\varepsilon_{\rm r} \le \pm 10\%, \sigma \le \pm 5\%$ < 15%, k=2	
$\epsilon_{\rm r} \le \pm 5\%, \sigma \le \pm 2.5\%$ $< 20\%$	Probe Calibration Range > ± 100 MHz Calibration Uncertainty (Submit Certification to FCC)	$\epsilon_{\rm r} \le \pm 5\%, \ \sigma \le \pm 2.5\%$ < 20%	

SAR Scan Requirements

< 4.5 GHz	Frequency	≥ 4.5 GHz	
≤ 3.5 ±0.5 mm	Closest Measurement Point to Phantom	≤ 2.5 ±0.5 mm	
≤ 5 mm	Zoom Scan (x, y) Resolution	≤ 4 mm	
≤ 3 mm	Zoom Scan (z) Resolution	≤ 2.5 mm	
≥ 30 x 30 x 24	Minimum Zoom Scan Volume	≥ 24 x 24 x 20	
≥7 x 7 x 9	Minimum Zoom Scan Grid Points	\geq 7 x 7 x 9	

SAR Scan Procedures

- probe boundary effect compensation required when
 - probe tip to phantom surface distance < ½ probe tip diameter</p>
 - or probe boundary effects error > 5%
- \bullet area scan resolution $\leq 10 \text{ mm}$
- peaks in area scan > 1.0 cm from scan boundary
- zoom scan configurations
 - -1st two measurement points ≤ 5 mm of phantom surface
 - 3 points recommended above 4.5 GHz
 - when graded grids (z) are used
 - 1^{st} point < 3 mm to phantom surface at < 4.5 GHz
 - 1st point < 2.0 mm to phantom surface at ≥ 4.5 GHz
 - subsequent graded grid ratio < 2.0; 1.5 recommended
 - 1-g SAR volume ≥ 5 mm from zoom scan boundary

Post- Processing

- post-processing algorithm accuracy
 - equivalent to 5 mm area scan measurement resolution
 - equivalent to 1 mm zoom scan measurement resolution
- verify with IEC 62209-2 SAR Reference Functions
 - 3 available functions to cover different SAR distributions
 - different area/zoom scan resolutions require independent verification
- verify interpolated/extrapolated peak SAR to identify post-processing errors
 - in highest SAR configuration
 - according to measured and extrapolated (curve-fitted) values

System Accuracy

- verify SAR measurement system accuracy
 - according to Supplement C 01-01 & IEEE 1528 criteria
 - using IEC 62209-2 (IEEE 1528a) reference dipoles
 - must measure within a valid probe calibration range
- system accuracy tolerance
 - 1-g SAR within 10% of manufacturer calibrated dipole target value
 - extrapolated peak SAR at phantom surface above dipole feed-point within 15% of calibrated target peak SAR of dipole

System Verification

- higher frequencies are mostly broadband
 - reference dipoles may not be available at desired frequencies
- SAR systems may be verified
 - within device transmission band or within ± 100 MHz
 of device mid-band frequency
 - within ± 200 MHz of device mid-band frequency only if both system verification and DUT are measured
 - using the same tissue-equivalent medium
 - the same probe calibration point, area/zoom scan resolutions, interpolation and extrapolation procedures

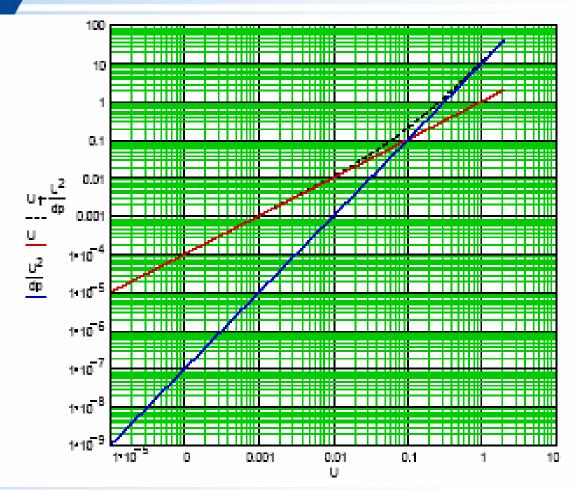
Duty Factor vs. Crest Factor

For t = pulse width and T = period of a pulse train

Duty factor of a periodic pulse train is t/T

Crest factor (voltage) of a periodic pulse train is $\frac{1}{\sqrt{\frac{t}{T}}}$

Power ∞ voltage²; therefore, peak to average power ratio is T/t


For TDMA with 2/6 duty factor, cf = 3;

GSM with 1/8 duty factor, cf = 8

Signal Conversion

SAR field-probe signal conversion equation in typical systems:

$$V_i = U_i + U_i^2 \frac{cf}{dcp_i}$$

- U_i is the measured voltage
- $V_i \propto \text{power}$
- cf is ∞ power
- *dcp_i* is the diode compression voltage

$$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} * ConvF}}$$

• $E_i \propto \text{E-field}$

- SAR Measurement Procedures -

for

802.11 a/b/g Transmitters

(Released October 2006)

Overview

- ▶ 802.11 a/b/g in §§15.247, 15.407 and Part 90Y
- dynamic network operating configurations & conditions
 result in unreliable test environment
- test mode conditions may not evaluate normal exposure
- multiple data rates, modulation schemes, operating protocols (a/b/g), antenna diversity and other proprietary configurations require substantial test considerations
- SAR measurement difficulties relating to voltage crest factors and peak to average power ratios of random noiselike signals

SAR Evaluation

- measure SAR according to
 - Supplement C 01-01 and IEEE 1528 criteria
 - October 06 release: "3 6 GHz SAR Measurement
 Requirements"
- configure the DUT in chipset based Factory Test Mode
- test the required channels, proprietary modes and antenna diversity configurations
- report both measured and duty factor adjusted SAR
- verify voltage crest factor and peak to average power ratio issues before SAR measurements and apply modified procedures as necessary

Modulation & Data Rate

802.11 a/g OFDM, 802.11g DSSS-OFDM, 4.9 GHz half/quarter-clocked			•	802.11b/g		
Dat	Data Rate (Mbps)		Modulation	Data Bata (Mhng)	Modulation	
full	half	quarter	Wiodulation	Data Rate (Mbps)	Modulation	
6	3	1.5	BPSK	1	DBPSK	
9	4.5	2.25	BPSK	2	DQPSK	
12	6	3	QPSK	5.5	CCK / PBCC	
18	9	4.5	QPSK	11	CCK / PBCC	
24	12	6	16-QAM	22	ERP-PBCC	
36	18	9	16-QAM	33	ERP-PBCC	
48	24	12	64-QAM			
54	27	13.5	64-QAM			

Part 15 Test Channels

Mode				Turbo	"Default Test Channels"			
		GHz	Channel	Channel Channel		§15.247		UNII
		2.412	1		802.11b	802.11g		
802.11 b/g			6	6	1	∇		
		2.437 2.462	11	0	√ √	∇		
					V	∇	-1	
		5.18	36				√	
		5.20	40	42 (5.21 GHz)				*
		5.22					-1	*
		5.24	48 52	50 (5.25 GHz)			√ √	
		5.26 5.28	56				V	
			60	58 (5.29 GHz)				*
		5.30					-1	*
		5.32	64				√	
	TINITE	5.500	100				. 1	*
	UNII	5.520	104	Unknown			√	_
		5.540	108					*
802.11 a		5.560	112				. 1	*
		5.580	116				√	_
		5.600	120				1	*
		5.620	124				√	_
		5.640	128					*
		5.660	132				1	*
		5.680	136				√	
		5.700	140					*
	UNII	5.745	149	150 (5.75 (17)	√		√	
	or §15.247	5.765	153	152 (5.76 GHz)	1	*		*
		5.785	157	1.60 (F.00 CIT.)	√			*
		5.805	161	160 (5.80 GHz)	1	*	√	
	§15.247	5.825	165		√			

P802.11-REVma-D6.0

Regulatory class	Channel starting frequency (GHz)	Channel spacing (MHz)	Channel set	Transmit power limit (mW)	Emissions limits set	Behavior limits set
1	5	20	36, 40, 44, 48	40	1	1, 2
2	5	20	52, 56, 60, 64	200	1	1
3	5	20	149, 153, 157, 161	800	1	1
4	5	20	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140	200	1	1
5	5	20	165	1000	4	1
6	4.9375	5	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	25	5	9
7	4.9375	5	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	500	5	9
8	4.89	10	11, 13, 15, 17, 19	50	5	9
9	4.89	10	11, 13, 15, 17, 19	1000	5	9
10	4.85	20	21, 25	100	5	9
11	4.85	20	21, 25	2000	5	9
612–255	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

Part 90Y Test Channels

Mode	GHz	Channel	Channel BW	Default/Required Test
		No.	(MHz)	Channels
	4.9425	1		1
	4.9475	2		
	4.9525	3		
	4.9575	4		
	4.9625	5	5	√√
	4.9675	6	5	VV
	4.9725	7		
Part 90	4.9775	8		
	4.9825	9		
Subpart Y	4.9875	10		√
	4.945	11		√
	4.955	13		
	4.965	15	10	√
	4.975	17		
	4.985	19		√
	4.955	21	20	√
	4.975	25	20	√

- receive diversity only
 - identify and test dedicated transmit antenna
- legacy switched diversity
 - test and determine highest SAR antenna
 - complete tests using antenna with highest SAR
 - test both antennas if SAR > 1.2 W/kg & > 25% variation
 - apply defined duty factor
- spatial diversity MIMO & cyclic delay diversity
 - simultaneous transmission
- 2-antenna beam-forming
 - simultaneous transmission + maximum EIRP condition
- other diversity configurations: contact FCC
 - STC, phased array, n-antenna beam-forming etc.

- devices should be tested according to these procedures to qualify for TCB approval
 - SAR Measurement Procedures for 3G Devices
 - CDMA 2000 / Ev-Do
 - WCDMA / HSDPA
 - SAR Measurement Requirements for 3 6 GHz
 - SAR Measurement Procedures for 802.11 a/b/g
 Transmitters
- otherwise, contact the FCC to determine if
 - exceptions can be made
 - additional procedures and/or requirements may apply
 - application should be submitted to the FCC for approval